
ELSEVIER 

Polymrr Vol. 37 No. 3, pp. 527-530, 1996 
Cotwright 8~: 1996 Elsevier Science Ltd 

Printed’i;l &a; Britain. All rights reserved 
0032-3861;96/$15.00+0.00 

A note on the Young’s modulus of isotropic two-component materials* 
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A model is described for predicting the elastic behaviour of two-phase isotropic materials, based on 
Takayanagi’s model, but taking transverse constraints into account. The model is compared with 
experimental results on Si02-filled epoxy and starch-filled poly-3-hydroxybutyrate (PHB) and PHB/3- 
hydroxyvalerate composites. 
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Introduction 

Predicting the elastic moduli of two-component 
materials from the properties of the individual compo- 
nents has been the subject of many investigations’-“. 
There is no exact general solution to this elasticity 
problem, since the moduli are affected by the morphol- 
ogy of the system, i.e. on the juxtaposition and shape of 
the individual components in space, and how they are 
bonded together. The basic difficulty is that one does not 
know a priori how stress and strain are transmitted 
through the system. 

Takayanagi et al.” proposed ‘series’ and ‘parallel’ 
models for polymers containing two separate phases. In 
their series model, the Young’s modulus E is obtained by 
averaging the strains in the individual phases, giving: 

E-’ = (1 - d)&’ + c#JEF’ (1) 

where EM and EF are the Young’s moduli of the two 
components and 4 is the volume fraction of the 
component labelled F. Similarly, by averaging stresses, 
the parallel model gives: 

E= (1 -d)E,+q+E, (4 

It has been discussed by Arridge12 that E in equation 
(1) is a lower bound, which is related to the well known 
Reuss bounds for shear and bulk moduli13. Equation (2) 
known as the ‘rule of mixtures’, is related to the upper 
bounds for shear and bulk moduli due to Voigt14, but is 
not identical to them. 

Since neither of these bounds generally describes the 
behaviour of a two-phase composite, Takayanagi devel- 
oped a combined series-parallel model for the tensile 
modulus E, by introducing a degree of parallelinity into 
the series model15. 

One obvious shortcoming of Takayanagi’s model is 
that it does not take into account transverse constraints 
on the components due to Poisson contraction, i.e. it is 
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essentially one-dimensional, with only one of the two 
independent elastic constants of each isotropic phase 
being used in the model. 

The purpose of the present note is to obtain an 
expression for Young’s modulus of a two-component 
isotropic composite, which takes into account the three- 
dimensional nature of stress and strain coupling in the 
material and includes all the elastic constants, to discuss 
the approximations which have to be used and their 
significance, and to compare the model with experi- 
mental results on some two-component systems. 

Model 

Consider a system composed of irregularly shaped 
filler particles (F) embedded in a matrix (M) with 
different elastic properties, and loaded by a uniaxial, 
external stress a in the 3-direction. Neither the six 
independent components of the stress tensor nor those of 
the strain tensor can be regarded as spatially constant. 
However, one can define average stress and strain 
components for each phase. We assume that the average 
normal stresses aj and strains Ei (i = 1,2,3) for each 
phase M and F obey the generalized Hooke’s law, as 
follows: 
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vM,F are the Poisson’s ratios of the two components M 
and F. The transverse directions 1 and 2 are equivalent to 
each other. All average shear components are set to zero. 

By considering a cross-section of material whose 
normal is parallel to the 3-direction, it is clear that 
equation (5) holds: 

a=b;~+a~(l-$) (5) 

The average longitudinal strains s,“.F can be related to 
the composite longitudinal strain E by considering a 
linear chord through the sample in the 3-direction. The 
proportion of M or F material encountered is equal to 
the respective volume fractions. Remembering that the 
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strains in the two components are average values. we can 
thus write: 

(6) 
Required ultimately is a relationship between t and 0, 
where: 

EZ (7) F 

The next step is to obtain; relatprnship between the 
average transverse stresses gI and CJ] . Since there is no 
overall external transverse force applied, we may write: 

01 =ap4+(7,“(1-+0 (8) 

where clearly the sign of the average transverse stresses 
will be different in each component. 

With regard to transverse strains cf” and F:, we may 
write: 

E, = $I$ + r,M(1 - 4) (9) 

where ~1 is the composite transverse strain. 
Let us now examine the series model in the light of the 

above three-dimensional approach. In order to treat 
transverse constraints, we consider an arrangement of 
two components as a unit cube embedded in a homo- 
geneous medium, as shown in Figure 1. Assume that the 
homogeneous medium has the average properties of the 
composite system, and that the embedded element is 
constrained to follow this behaviour. In this diagram the 
two components F and M are coupled in series in the 
tensile direction 3 and in parallel in the transverse 
directions 1 and 2. Equations (5) and (9) now take the 
following form: 

Combining the above equations we obtain the following 
expression for the composite Young’s modulus E in 
terms of EM, EF, uM, I+ and 4: 

If both Poisson’s ratios are zero (+, = r+ = 0), equation 
(11) reduces to the series model or Reuss lower bound 
(equation (1)) as it must do, since there are no transverse 
strains. The transverse constraints are thus zero, and the 
modulus has its lowest possible value. 

There is another situation when the Reuss bound is 
obtained, i.e. when Q/EM = vFIEF. This arises when 
the transverse strains in both components are equal 
without causing any transverse stresses. 

For 1/M = + = 0.5 (both phases incompressible), 
equation (11) reduces to the rule of mixtures result 
(equation (2)). All other values of the Poisson’s ratios 
(between 0 and 0.5) lead to modulus values between these 
two values. Figure 2 shows some examples. 

The parallel model, similarly adapted to this self- 
consistent three-dimensional scheme, does not lead to 
anything new, since the rule of mixtures result apertains 
for all values of Poisson’s ratios. 

It is clear that this ‘longitudinal series/transverse 
parallel’ model as described here does not represent a 
bound on the Young’s modulus, nor is it an exact result, 

I d 

F 

~ 

3 

M L I 
I 

Figure 1 Element of two-component material embedded in average 
homogeneous material and loaded by a tensile stress (T in the 3-direction 
(longitudinal series/transverse parallel arrangement) 

,I ,I,# II,*IIII I II < 
0.0 0.2 0.4 0.6 0.8 1.0 

Figure 2 Young’s modulus WYSUS filler volume fraction 0 for 11 = 1 
(equation (11)): (a) VM = I+ = 0.5; (b)-(d) 0 < v~, vr < 0.5; (e) 
VM = “F = 0 

Figure 3 Comparison of Chow’s results’ with: (a) equation (11) of this 
work; (b) Kerner’s model”; (c) Reuss bound (equation (1)); (d) rule of 
mixtures (equation (2)) 

but it may be a useful expression which could describe 
experimental results satisfactorily. The model will now be 
compared with experimental results for some particular 
composites. 

Comparison of model with experimental results 
Figure 3 shows firstly a comparison with the results of 

Chow’ on silica-filled epoxy resin. This is a composite 
system comprising glass spheres embedded in an 
amorphous resin matrix. The following data for the 

528 POLYMER Volume 37 Number 3 1996 



Young’s modulus of two-component materials: A. J. Owen and I. Keller 

individual components were used: EM = 1.7 GPa; vM = 
0.35; EF = 36.0 GPa; + = 0.22. Curve a, which is plotted 
according to equation (1 l), gives good agreement with the 
experimental results (circles). The equation of Kemer’s 
model”, which was derived for spherical inclusions, also 
gives reasonable agreement with the data. 

Secondly, we applied our model to the behaviour of 
starch-filled poly-3-hydroxybutyrate (PHB) and a copo- 
lymer of PHB and 3-hydroxyvalerate (PHB/HV). These 
materials have been described elsewhere16. This compo- 
site system consists of irregularly shaped starch particles 
of different sizes embedded in a semicrystalline polymer 
matrix having a spherulitic morphology. The model 
presented above may be ideally suited to describing the 
behaviour of such a complex two-component system, 
because the parameters of the model are simply the 
average elastic properties of each component, i.e. the two 
components do not have to be microscopically homo- 
geneous and isotropic. 

For this investigation, the Young’s modulus of both 
PHB and PHB/HV (EM) were known from tensile stress- 
strain measurements, and the Poisson’s ratios (VM) had 
been determined indirectly via the shear modulus G from 
three-point bending measurements. The Young’s modulus 
of starch (EF) and its Poisson’s ratio (J/M) were unknown 
quantities, whose values were required. The values in Table 
I were used for the matrix elastic constants. 

The dashed lines in Figures 4 and 5 show numerical best 
fits of equation (11) to the experimental points (circles) 
where the two parameters EF and UF were allowed to vary 
freely. A fairly poor fit to the data points is obtained in this 
case. This discrepancy leads us to examine ways in which 
the model could be improved. There are no parameters in 
the model which relate to sample morphology. This 
implies that, provided the same two components are 
involved, only the volume fraction determines the resulting 
modulus. This is not correct in general; Vollenberg and 
Heikens2, for example, observed effects due to the size of 
filler particles. Furthermore, by means of X-ray diffraction 
measurements Nakamae and co-workers17 showed that a 
stress concentration factor of between 2 and 4 occurred in 
an aluminium particulate epoxy composite, where this 
factor is defined as the ratio of stress in the filler particles to 
the applied stress. 

There are several more or less unsatisfactory ways of 
introducing parameters into the above model to account 
for morphological effects. We choose here to define a 
stress concentration factor 7, given by: 

6 = 7p (12) 
This parameter is assumed to be constant, i.e. independent 
of filler volume fraction 4. In addition, the following 
condition must apply: 74 < 1. Furthermore, although the 
transverse strains .Cy,M are generally not equal, we assume 
for the present purpose that they are. This leads to the 
following expression for the composite modulus: 

1 _-1-n@ ~ VP 
E EM EF 

+ (2+E)(i_gy)+(E-g& 
1 - i+, 1 - ,+ 

(1 -$)EM+ ~EF (13) 

Table 1 Values of matrix elastic constants 

Matrix M E (GPa) G (GPa) v 

PHB 2.49 0.91 0.37 f 0.06 
PHB/HV 0.61 0.22 0.40 f 0.05 

Figure 4 Young’s modulus of starch-filled PHB YWSUS 4: (a) fit 
according to equation (11) (for n = I); (b) fit according to equation (13) 
(q = 1.4) 

!O 

Figure 5 Young’s modulus of starch-filled PHB/HV verws 4: (a) fit 
according to equation (11) (7 = 1); (b) fit according to equation (13) 
(7 = 1.7) 

Table 2 Young’s modulus and Poisson’s ratio of starch 

PHB PHB/HV 

n=l v = 1.4 n=l n= 1.7 

EF (GW 6.1 4.9 7.1 5.2 
VF 0.18 0.19 0.10 0.21 

The additional parameter n enables a better fit of the 
model to the experimental points (see Figures 4 and 5), at 
the same time satisfying a requirement that stress 
concentrations should be taken into account. Table 2 
shows the values obtained for the Young’s modulus of 
starch and its Poisson’s ratio. The stress concentration 
factor obtained from the best fits is seen to lie between 1 
and 2 here, which are plausible values. The estimated 
Young’s modulus of starch is seen to be lower when 
stress concentrations are considered. 
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In conclusion, it would be inappropriate to make 
remarks about the general validity of the proposed 
model from such limited comparison with experimental 
results. Further work is still needed in this respect. 
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